
Asset-Based Lending smart contract for Liquid network
Author: Dmitry Petukhov (dp@ruggedbytes.com) (C) 2020

With review and help from Russell O'Connor

Released under Creative Commons CC-BY-SA 4.0 License

Introduction

Challenges in 'smart contracts'

Contracts are specified with constraints and alternatives for the behavior of the parties entering the contract. The
specification is created in a way to encode the mutual agreement between the parties for a subset of their future behavior
- the 'spirit' of the contract.

Such encoding (the 'letter' of the contract) is good if the interpretation of this encoding in all relevant states of the
'universe' the contract is interpreted in allows for all the behavior parties agreed to, and disallows the behavior parties
agreed that it is not acceptable.

Often the number of possible states and transitions in a contract is so big that it is cumbersome to encode all of them in
the contract. Hence, a lot of cases get deferred to broader rules such as laws of the country. For cases that are not
covered by the contract or when the law is ambiguous, the resolution is deferred to the third party, which can be a court
of law.

For contracts encoded for execution in blockchain-based distributed consensus systems ("blockchains"), the final arbiter
is the network of independent agents and the rules of consensus that governs this network. Deferral to the court of law
may be possible if the parties to the contract are mutually identified, but this might be undesirable or uneconomical. In
extreme cases, there can be calls to make exceptions to consensus rules to rectify unintended consequences of some
contract execution. This may pose danger to the most valuable property of such networks - the consensus.

There may be different answers to the problems outlined above for blockchains: centralization ('the blockchain
governance'), real-world contractual agreements in addition to on-blockchain contracts, or ensuring that totality of the
contract states and transitions can be understood by the parties to the contract.

The later may actually be achievable if the rules of the contract and the relevant rules of the blockchain the contract is
encoded for are sufficiently simple. The reduction in complexity may mean that such contracts cannot express rules
complex enough to encode all the conditions that parties to the contract desire to encode. Still, we believe that with
sufficient research, encodings can be found that would capture the essence of the popular contracts, and that these
encodings can be widely examined and sufficiently understood.

UTXO-based1 blockchain systems are most suitable to achieve this goal, because the rules governing the spending of
the units of value in these systems are relatively simple and understandable. When the rules for the spending of an
UTXO restrict not only how the current UTXO can be spent, but also putting restrictions its descendant UTXO, this is

usually referred to as "covenant"2. By combining covenants, it is possible to build constructions that can have
significant expressive power for defining the rules of the contract.

The innovations

We will show how features such as the possibility to create covenants that restrict spending of UTXO by the hash of

transaction outputs, and how the ability to issue and transact new assets on Liquid network3 allow to build an Asset-
Based Lending contract that can be examined and understood in its entirety without extraordinary effort, from the high-
level specification to the low-level (the transactions and the covenant scripts).

One distinguishing feature of Elements platform and Liquid network that is built on this platform is the confidential
values and confidential assets in transactions, where only those who possess special "blinding" keys can the view actual
values and asset types in the transaction outputs protected by this feature. We will show that it is possible to use this
feature to protect the financial privacy of the parties in the contract, and still enforce the rules of the contract.

The already mentioned ability to issue and transact new assets is used to enable the transfer of the contract rights and

https://creativecommons.org/licenses/by-sa/4.0/

obligations to the third party without spending the UTXO locked by the covenant. This enables a secondary market for
such contracts to exist.

Our approach to contract specification and development

Holistic analysis

In blockchain systems, the behavior of the contracts is defined through layers of successive encodings from the high-
level specification of the contract down to on-chain behavior.

The layers can include: the network of deterministic agents interpreting the encoded behavior; the semantics of the low-
level language such agents implement to interpret the encoded behavior; the compilers from the high-level languages
used to encode behavior to the low-level language; translation of the contract specifications and concrete contract
parameters to the code and data ready for deployment.

Each layer introduces a degree of complexity, and complexity increases the effort required to check that the behavior
allowed by the aggregate encoding of the contract represents the contract specification fairly.

The simpler the layers are, and the fewer layers exist, the less is the probability of deviations. Note that formal
verification employed at particular level can somewhat alleviate the difficulties introduced by complexity, but these
gains do not usually transfer to the other layers.

This means that the examination of the contract needs to be done holistically over all the layers of the system.

Reasoning about the contract behavior

On each layer, reasoning about the contract behavior require specific considerations. When the layer-specific reasoning
is localized, it is also becomes easier to reason about the whole contract and inter-layer interactions.

On the layer of network agents ("network layer"), we need to reason about the rules of enforcing the timelocks, the
rules of transaction sorting in the mempool, and inclusion of the transactions in the blockchain.

Inclusion of a transaction in the blockchain results in spending one set of UTXO and creating another set of UTXO,
which represents state transition in the contract.

The contract construction requires the use of absolute timelocks, and allows to set the fee for the transaction at the
spend time. Reasoning about absolute timelocks is simpler, and setting the fee at spend time gives the spender an ability
to control the transaction position in the mempool directly, by replacing the transaction with the new one that pays
increased fee, but still adheres to the rules of the contract for particular state transition.

There are two available timelock mechanisms: blockheight-based and median-time-past based4. The former are more
precise in definition, but is sensitive to the rate with which the new blocks are produced. The later does not have the
easily predicted cut-off moment where the timelock expires, but is based on the wall-clock time of the block producers.

On the layer of Elements Script ("script layer") Where the UTXO spending conditions are enforced by the low-level
opcode interpreter, we need to reason about the constraints and alternatives the script allows with expected arguments
(witness data), and ensure that successful execution of the script is impossible with unexpected arguments.

Our covenant scripts are quite easy to understand, with the extensive comments provided in the Appendix section. The
scripts are either linear or can be considered as such, because OP_IF conditionals are branching on the flag directly
provided by the spender, so it can be said that they just choose between the two linear scripts to execute.

Because the covenant scripts are small, their goal is simple and the data is manipulated in a straightforward way, it is
easy to trace the script execution and show that successful completion is impossible with unexpected arguments and that
the script enforces the needed constraints.

The layer of high-level language compilation ("compilation layer") we do not need to consider, because we work with
Elements Script directly.

It is possible that this layer will need to be considered when Simplicity5 bit machine will be introduced in Elements.
Clear and concise semantics makes programs compiled for Simplicity bit machine well-suited to apply formal methods
to. High-level languages that target Simplicity will allow to express complex spending rules more conveniently, and
hopefully some of the complexity can be counterbalanced by the formal verification.

The miniscript encoding developed by Blockstream and the Policy Language6 that is compiled to miniscript provide the

tools to easily define spending rules using a number of standardized components that can be combined together in
predefined ways. The advantage of the Policy Language is at the same time its weakness. It provides great clarity when
your spending conditions can be defined using its restricted set of expressions. It is not applicable otherwise, and cannot
be used to define our custom covenants.

On the layer of translating the contract specifications ("translation layer") and concrete contract parameters to the
encoded constraints, we need to reason about data generation.

The transaction templates are constructed for each possible stage of the contract execution. Arrays of outputs from the
constructed transaction templates are serialized, and the hashes of this data are used to encode the constraints for the
stage. Timelock constraints are calculated from the contract parameters. These hashes and the timelock constraints are
then embedded in a predefined Elements Script code templates.

This is the most sophisticated part of the whole contract implementation, but on this layer we are also the most prepared
to deal with complexity.

We are able to use well established general-purpose programming languages, which makes it possible to use a wide
arsenal of tools to ensure the correctness of the code, and also facilitates code review.

On the inter-layer interactions, we need to reason about how the generated data is embedded in the low-level script,
how the timelocks express the intended contract terms, how the timelock restrictions interact with mempool ordering,
etc.

At this layer we only have our models, judgement and the knowledge of the underlying levels as the tools of reasoning.

We will need to use tools available at the respective layers to ensure that our models are fairly encoded.

This is the layer most suited for wide review, and publishing the detailed explanations is one of the tools available to
ensure consistency of the models and judgement, via critical public review.

High-level specification

The specification of the contract terms is presented in this section.

An example algorithm for the calculation of differentiated repayments is specified.

The contract can accomodate other algorithms as long as they can produce the results representable by the fixed amount
of covenant-locked steps.

The terms for the contract variant with partial repayments has also been specified using TLA+ formal specification
language at https://github.com/dgpv/ABL_contract_TLAplus_spec/

Contract premise

Alice possesses certain quantity of asset Principal_Asset that she does not currently utilize, but wants to extract some
value from.

Bob possesses asset Collateral_Asset, but needs some amount of asset Principal_Asset temporarily.

Bob does not want to sell Collateral_Asset, because he predicts that its value or utility will be higher in the future than
what the current market value, for tax reasons, etc.

Bob is willing to pay the for the temporary use of while offering amount of Collateral_Asset as a guarantee of
repayment to the creditor.

Contract can be terminated at any time by any settlement that is mutually agreed by the two parties.

Basic Asset-Based Loan contract

 is the point in time when contract begins

 is the point in time when the pre-agreed duration has passed since

Interest rate is pre-agreed

Alice is willing to give out to Bob, provided that:

Before , she will receive

P

P C

t0

t1 t0

R

P

t1 P + P ∗ R

https://github.com/dgpv/ABL_contract_TLAplus_spec/

Otherwise, at or after , she will be able to claim

Bob is willing to freeze for certain period, provided that:

He will receive immediately
If is repaid before , he can recieive back

Bob agrees that if is not repaid before , Alice can claim for herself.

Contract start: To enter the contract, Alice and Bob create and cooperatively sign a transaction that:

Sends , provided by Alice, to Bob's address
Sends , provided by Bob, to the address of a script that enforces the terms of the contract above

This contract is simple, but limited. It requires for principal to be repaid in one lump sum, it is often preferable for the
principal to be repaid in portions over time.

Asset-Based Loan contract with partial repayments

The repayment is split into installments.

 consecutive missed payments lead to collateral forfeiture.

The contract ends in maximum number of steps.

The concrete value of within this range is pre-agreed.

The rates used for calculation of interest or surcharge are pre-agreed:

 is the rate for regular repayments due
 is the rate for surcharge on early repayments
 is the rate for penalty on the part of collateral returned in the event of default

 are the rates for surcharge on late repayment: is applied when one payment is missed,

 is applied when two consecutive payments are missed, and so on

 is the number of partial repayments,

 is the number of missed payments,

 is the outstanding principal balance

 is installment size (the "Fraction of ")

 is the portion of the balance currently due to be repaid7

 is the amount the repayment is late on

 is the amount of collateral that is unconditionally forfeited in the event of default

 is the regular repayment amount

 is the early repayment amount

 is used for calculating collateral distribution in the event of default

The contract can progress over total time periods, and are the points in time at the beginning of each
period.

At :

Alice is willing to give out to Bob, provided that:

Before each she will receive , and then:

 will be incremented
 will be reset to 0
 will be decreased by

t1 C

C

P

P + I t1 C

P + I t1 C

P

C

N

M

S ∈ [max{N , M} + 1, N + M]

S

RD

RE

RC

RL(1) … RL(M−1) RL(1)

RL(2)

n n ∈ [0, N]

m m ∈ [0, M]

B

FP = P

N
P

D = min{FP ∗ (m + 1), B}

L = min{FP ∗ m, B}

Cuncond

Areg = D + B ∗ RD + L ∗ RL(m)

Aearly = B + B ∗ RD + (B − D) ∗ RE + L ∗ RL(m)

Apenalty = max{B, Areg} + max{B, Areg} ∗ RC

S t0 … tS−1

t0

n = 0
m = 0
B = P

P

ts, s ∈ [1, S − 1] Areg

n

m

B D

Otherwise, will be incremented
If , or after , she will be able to claim certain portion of

Alice agrees that before , can be set to 0 if Bob repays

Bob is willing to freeze for certain period, provided that:

He will receive immediately
When the condition is reached during contract execution, he can receive back

Bob agrees that Alice can claim a portion for herself if the condition is reached during contract execution, or
after the point in time is reached.

A portion of that Alice can claim in this case will be dependent on the amount of principal that was repaid previously,
and will equal to , and Bob will receive portion of

the collateral back8

Contract start: To enter the contract, Alice and Bob create and cooperatively sign a transaction that:

Sends , provided by Alice, to Bob's address
Sends , provided by Bob, to the address of a script that enforces the terms of the contract above

Examples

Calculated amounts on the presented schemes are rounded down.

Example scheme 1 illustrates the contract with:

,
, ,

, corresponts to 2%, 0.1%, 10%, (3%, 5.5%)

m

m ≥ M ts, s ≥ S − 1 C

tN−1 B Aearly

C

P

B = 0 C

C m ≥ M

ts, s ≥ S − 1

C

Cforfeit = max{Cuncond, min{C, C ∗ Apenalty ÷ P}} C − Cforfeit

P

C

P = 10000 C = 1000
N = 4 M = 3 S = 7
RD = 0.02, RE = 0.001, RC = 0.1, RL = (0.03, 0.055)

Example scheme 2 illustrates the contract with:

,
, ,

, corresponts to 2%, 0.1%, 10%, (3%, 5.5%,
8%)

The layout with allows to have the collateral forfeiture event to always happen in one particular
period.

Representing state in the contract

As shown in the specification, there are three main components of the state: , and . On the graphical scheme, we
can see that change of these variables is orthogonal: increases as the contract progresses laterally, and decreases.
increases as the contract progresses vertically.

On the network layer, the state progression is represented as spending the UTXO that represents the current state to
create a new UTXO that represents the new state (enforces the constraints that should be applied in the new state).

It can be said that actions of Debtor move the state laterally, and actions of Creditor move the state vertically.

Lateral state progression

This is pretty straightforward. With repayment of debt, each new state in lateral progression represents reduced
obligations of Debtor. When the debt is repaid in full, the collateral is returned to Debtor. The Debtor is not required to
wait for the end of the time period to perform the partial repayment, but there is no incentive for them to pay too early.
The contract allows the Debtor to repay early in full, but there is no reduction of interest if they decide to combine the
repayments of adjacent periods. Combining partial repayments to reduce interest is a complication for the non-common
case. Such cases can be dealt with via mutual agreement clause in the contract.

Vertical state progression

The vertical progression is more interesting. Timelocks can prevent the spending of UTXO before a certain point in
time. But after that point in time, restriction is lifted forever.

The amount of interest that Creditor is entitled to receive increases with . The Creditor would want to restrict the
ability of a Debtor to spend UTXO that represents the state with after point in time has passed, so only the
transactions that pay the increased interest can be valid.

P = 10000 C = 1000
N = 4 M = 4 S = 5
RD = 0.02, RE = 0.001, RC = 0.1, RL = (0.03, 0.055, 0.08)

N = M = (S − 1)

n m B

n B m

m

m tm+1

The direct mechanism to restrict the validity of transactions after certain point in time has some fundamental problems

related to resolving chain reorganizations9, and is unlikely to ever be available in Bitcoin-based cryptocurrency
networks.

Since we cannot create a contract that would automatically revoke the ability of the Debtor to use earlier states in a
vertical progression, the Creditor has to perform an action to do this revocation. And the timelock can be used to
prevent the Creditor from performing this action too early.

After the timelock representing the end of period expires, the Creditor can spend the UTXO with locked collateral, to be
locked in the new covenant. This new covenant will represent the next state in the vertical progression. The last
covenant in the vertical progression will allow the Creditor to claim the collateral (in full or in part, depending on the
terms and the state of the contract).

Transferable rights and obligations

A distinguishing feature of Elements/Liquid is the natively issued assets, that is present in the transaction data and
therefore can be committed to by covenants. This enables another interesting feature, the on-chain spending delegation.

It is possible to cheaply issue a new unique asset (with total issued amount equal to 1), and then construct the spending
condition in a covenant in such a way that spending requires that this particular unique asset to be present in the
transaction. The UTXO with that asset (the "control UTXO") is different from the UTXO that locks the collateral (the
"main UTXO").

The spending condition in the main UTXO covenant is tied to the asset id of this unique asset, and not the keys of the
participants. It is possible to transact the control UTXO independently of the main UTXO. This allows to transfer the

ownership of the rights or obligations in the contract without changing the contract's state10.

This on-chain delegation of spending enables secondary market to exist for the contracts that are implemented via
Elements/Liquid covenants.

Control assets

Both Debtor and Creditor will receive their own unique issued assets on contract deployment. These assets will be used
to control the respective sides othe contract.

"Debtor's control asset" will be required to be present in the transaction outputs whenever lateral state transition or final
debt repayment happens.

"Creditor's control asset" will be required to be present in the transaction outputs whenever vertical transition or the
forfeiture of collateral happens.

The mechanism for controlling the spending via a control asset is simple. As the covenant script "fixes" certain
transaction outputs, one of these fixed outputs can be the output that bears the asset id of the control asset, and the
amount of 1. Since the control asset is issued with total amount of 1, there can be only one UTXO in existence with that
asset. Therefore, to spend a covenant controlled via this mechanism, the spender must also control that UTXO, and
include it as one of the inputs to the transaction.

As that UTXO with the control asset can be independently spent, it is possible to transfer the control of the covenant.
This "control UTXO" can be sold, atomically swapped, can even be bound by its own covenants. This makes it possible
for the secondary market for the contracts controlled via this mechanism to exist.

Because OP_CHECKSIGFROMSTACK-based11 covenants allow to commit not only to all outputs as a whole, but to
the part of the outputs, and the boundary of the committed/non-committed part is not necessary on the boundary of the
data representing a single output, it is possible to enforce the requirement that certain output bears particular asset and
amount, but allow any scriptpubkey in this output. Thus the covenant that requires certain control asset to be present can
also allow that control asset to be sent to any address.

It might be possible to devise more elaborate control schemes with assets that have total issued amounts of more than
one. We did not explore this in too much detail. In trivial, easy to devise cases this strategy does not seem to have an
advantage over traditional multisig policies.

Another thing to note is that transferring the control asset not only gives the control over the corresponding side of the
contract, but also the control of all the repayments made by the Debtor to date, if these repayments are not yet spent. If

the current owner of the Creditor's control asset do not wish to also gift the already made repayments to the new owner
of the control asset, they need to spend these repayments to their own addresses, first.

Keeping data confidential

Parties to the contracts often want the terms or even the existence of the contract to be confidential, due to commercial
and privacy considerations.

On-chain versus off-chain

In contrast with off-chain contracts, which usually reveal some of this information only when the parties disagree and
one party decides to settle on-chain, smart contracts that are executed on-chain will always make some of the
information about the contract public.

The on-chain contract deployment transaction can have distinguishing features that can reveal what kind of the contract
it likely is, and show that certain pseudonymous entities are entering the contract, by attributing the source UTXO that
was spent for contract creation. Spending the UTXO locked in the contract necessarily reveal the scripts that enforce the
terms of spending this particular UTXO. While these terms may not reveal all the terms of the contract, they may reveal
some part of these terms, and also allow an outside observer to narrow down the identification of what type of the
contract this is.

Off-chain contracts can have disadvantages like interactivity requirements, limited expressiveness or increased
complexity of zero-knowledge cryptographic constructions.

For the type of the contract described here, where the state transitions are likely to be infrequent, the on-chain contract
is a good choice, especially when the underlying blockchain network has additional privacy features.

Confidential transactions

Confidential transactions do not reveal the amounts in transaction outputs, or the type of assets transferred. Using
confidential amounts and assets in a covenant is a challenging, but feasible task. Such confidential covenants make
preserving privacy for on-chain contracts a bit easier.

The covenants used in the contract described here require that those outputs of the transaction that are critical to enforce
the contract terms exactly match the outputs of the template transaction that was created according to these terms before
the contract is deployed on-chain.

One problem with this is that the process that is applied to the transaction outputs to make the amounts and assets

confidential12 (the "blinding" process) uses random data in the calculations. The random data is necessary for the
cryptographic construction to work as intended. An outside observer that can know or predict that data can reverse the
"blinding" process and reveal the assets and amounts.

The requirement that an outside observer is unable to predict the data does not mean that the data has to be truly
random. Its distribution has to be uniform, but it can be deterministic. An outside observer has to be unable to know or
predict the source values from which this deterministic random data is generated (the "random seed").

It makes sense to choose a shared extended BIP3213 key to be used to generate both the "blinding keys" for the outputs
the participants are willing to share details about, as well as to generate a random seed for blinding these outputs from
the same shared extended key. It also makes sense to use different BIP32 derivation paths for the blinding keys and
random data.

One complication is that when a transaction with confidential outputs also has confidential inputs, the data of the
confidential fields in the outputs of this transaction will depend on the data in the inputs. The so-called "blinding
descriptors" that one has to supply to the blinding function for each input contain the "blinding factors" for amounts and
for asset identifiers.

When the tree of transaction templates are prepared, the blinding factors of the "parent" transactions in the contract are
already deterministic. But when there are "free" inputs, such as the inputs used to repay the debt, that are not known
when the contract is created and deployed. The UTXO used for these inputs need to be specially prepared, they have to
use contract-specific deterministic random data to make the blinding factors the same as the contract's covenant expect.

This means that, for example, the Debtor that is going to partially repay the debt will need to make an extra transaction
to create this special UTXO with deterministic blinding factors. The small cost of this extra transaction is justified by

the increase in privacy.

Often this can be worked around, because in the blinding process, only the last confidential output receives the
'balancing' blinders and has its data changed. If the covenant can avoid committing to the last confidential output,
arbitrary confidential inputs can be used.

Before contract deployment

Verification of the covenant scripts

Before the contract is committed on-chain, participants can verify the functioning of all the covenants in the contract.
The covenants do not commit to the inputs of the transactions, only to the outputs. This makes creating the mock
transactions to test even easier. Script verification in Bitcoin-derived systems does not require access to the blockchain.
The timelock values are assessed based on nLockTime field of the transaction. While transaction with particular
nLockTime may not be accepted by the blockchain at the moment of testing, it is fine to use such transaction for the
purpose of the verification of script execution.

Number of possible states in the described contract grow with larger and parameters. Still, for many practical
combinations it is feasible to generate all the transactions and witness data to exhaustively test the possible states in the
contract and check that spending scripts for all inputs finish successfully. Where an input needs to be signed by the
counterparty, the tester can just do the signing themselves with some keys generated specifically for this test. It is the
covenant scripts that are tested, not the ability of the counterparty to sign.

The possibility to do these tests in isolation allow the participants to gain increased confidence in the correctness of
execution of the contract before it is deployed on-chain.

Privacy of UTXO ownership

For the initial contract transaction to be created, at least one party have to know all the UTXOs that go into that
transaction. This is because someone needs to broadcast the transaction, the transaction has to be valid and thus contain
all the inputs. The party that received the information of the UTXO of the counterparty, can just stop any
communication, but at this point there is an information asymmetry. One party knows more than the other. The amounts
for the contract are negotiated beforehand, so not only the UTXO is known, but the amount and the asset of that UTXO
as well, even though it may be protected by the confidential transaction features of Elements/Liquid.

One way to solve this problem is to use a trusted third party. The trust participants need to extend towards this third
party is only in that it will respect their privacy, and will not share the information about their UTXO with anyone. It
will not take the custody of the funds at any moment. Such third party, let's name it "Facilitator", would know the terms
of the contract and all the UTXOs that participate in the contract.

The participants will receive the semi-signed transaction from the Facilitator with the UTXO of the counterparty
removed. They will then sign their inputs with sighash flags SIGHASH_ALL and SIGHASH_ANYONECANPAY, so
their signature would commit to all outputs of the transaction, but only one input, their input. The Creditor's control
asset and the Debtor's control asset would be issued using the Creditor's and Debtor's inputs, accordingly. This way they
can ensure that the total amount of the control asset is exactly one, there's no reissuance, and that control asset is sent to
their address.

Contract deployment

Interactive

In the basic scheme of the contract deployment, the Debtor's control asset is issued in the input that bears the collateral
asset, provided by the Debtor, and the Creditor's control asset is issued in the input that bears the principal asset,
provided by the Creditor. This means that the parties must know the asset ids before they can sign their inputs. They can
prepare the deployment transaction together and mutually sign it.

When the parties do not want to reveal their UTXO to the other party, they can use the services of the Facilitator, as
discussed earlier. The Facilitator can relay the asset ids between the counterparties without revealing their UTXO. This
would still be an interactive process:

N M

The first party that initiates the contract chooses the contract terms and gives their UTXO, that also bears
the issuance of the first control asset, to the Facilitator
Facilitator gives the contract terms and the first asset id to the second party
The second party accepts the terms and gives the Facilitator their signed UTXO that also bears the
issuance of the second asset id
The Facilitator gives the second asset id to the first party
First party gives their signed UTXO to the Facilitator
Facilitator completes and broadcasts the contract deployment transaction

Non-interactive

To make the deployment non-interactive, the first party need to know the asset id of the second party beforehand. That
asset can be issued separately by the first party or the Facilitator. The second party needs to check that this asset is
issued with total amount of one and no reissuance allowed. Because the address of the second party is not known
beforehand, the deployment transaction has to allow the second asset to be sent to any address. This means that
additional covenant will be involved.

For example, the process where the Debtor seeks the loan with the help of the Facilitator would be:

The Facilitator issues the asset with total amount of one and no reissuance, gives asset id to the Debtor
The Debtor builds the contract using its collateral UTXO to issue the Debtor's control asset, and the asset
id provided by Facilitator as the Creditor's control asset
The Debtor prepares and signs a transaction that sends the collateral UTXO to the covenant that allows
two options for the locked "pre-contract" collateral UTXO:

It goes into contract deployment transaction
It goes back to the Debtor

The Debtor gives that signed transaction to the Facilitator, but Facilitator does not broadcast it yet
The Creditor that wants to take the Debtor's offer checks the issuance transaction of the Creditor's asset,
and makes sure that the asset is issued with total amount of one and no reissuance
The Creditor constructs a transaction that sends the Creditor's asset to their address, and that allows the
Debtors' collateral UTXO pre-contract covenant to be satisfied
The Creditor signs their principal input using SIGHASH_ANYONECANPAY flag, so the signature
commits only to the principal input, but also to all the outputs, including the destination address for the
Creditor's control asset
The Creditor gives their signed input to the Facilitator
The Facilitator completes the deployment transaction by signing their input that bears the Creditor's asset,
using SIGHASH_ALL flag
The Facilitator broadcasts two transactions: First the pre-signed transaction that sends the collateral to the
pre-contract covenant, and then the contract deployment transaction

In this process, after the initial agreement of the Debtor to offer their collateral to get the loan on certain terms and
giving the Facilitator their pre-signed transaction, further actions from the Debtor is not required, and Facilitator can
complete the process with any Creditor.

The Debtor can opt out of the contract at any time before the contract deployment transaction was broadcasted, by
spending their collateral UTXO. The deployment transaction will be invalid if the collateral UTXO is spent in another
transaction, so the contract deployment will be atomically aborted.

The Debtor that is willing to reveal their UTXO can issue the Creditor's asset themselves, and lock this asset in a similar
pre-contract covenant, then publish the details. This way, anyone can fullfill the Creditor's part and enter the contract.

Note that because the asset id does not commit to the issued amount, the issuance transaction that the Creditor checks
has to be already confirmed at the time of the check.

Of course, the similar process can be perfomed when the Creditor is the party that offers the principal on their chosen
terms and Debtor enters the contract non-interactively.

Blockchain network considerations

Timelocks

The scripts in the presented contract use lock-by-blockheight timelocks. Bitcoin-based blockchains also have an option

to use the lock-by-blocktime (median-time-past) timelocks4.

The blockheight-based timelocks are more convenient to use, because they are more exact. At the same time, the inter-
block interval is not fixed by consensus in Liquid Network, and in theory the Liquid federation can decide to change the
inter-block interval.

If this happens, and the blockheight-based timelocks were used for the implementation of the contract, the assumptions
about real-world time for the periods defined by the contract will not be correct anymore.

This can be dealt with by using median-time-past timelocks, or by trusting the federation to not change the inter-block
interval at least for the period when the contract can be active. Such drastic change is unlikely to be done suddenly, and
it is likely to be announced with significant leeway. Still, the long-running contracts has to take this into account.

Identifying contract transactions

When the contract is deployed and operated, new transactions are created by the participants. These transactions
correspond to the allowed transitions in the contract state, and therefore it is possible to reconstruct the contract state by
retrieving data from blockchain, when you know the initial, 'seed' data for the contract.

The seed data for the presented asset-based lending contract with partial repayments include:

The terms of the contract, that consist of the variables defined in the contract specification:
, and the length of the time interval .

The txid of the contract deployment transaction
Shared blinding extended key that is used in producing blinding keys and deterministic random data for
the contract transactions

Since the deterministic algorithm is used in generating all the transaction templates for the contract before the contract
deployment, and that the covenants only allow the transactions that match these transaction templates, it is possible to
walk the transaction tree in the blockchain to find the actual state of the contract.

Participant that wants to sell their rights and obligations under contract to the third party can provide the seed data to
them, and that third party can independently analyze the terms of the contract and its current state, to assess the
potential purchase.

Mempool considerations

Fees

The covenant construction used for this contract allows to set the transaction fees dynamically at the time of the
broadcast of the transaction, rather than at the time of creation of the contract, even though transactions in Elements are
required to state their fees explicitly via special "fee output". This is because OP_CHECKSIGFROMSTACK-based
covenant allows to commit only to the part of the outputs data, and thus the fee output can be 'free-standing'.

Transaction pinning

There is an issue known as "transaction pinning"14 that arises from the conflict between the need to bump the
transaction fee and the need to protect nodes from wasting bandwidth due to mempool transaction spam.

Transaction pinning may enable an attack that prevent certain transaction in the contract to be confirmed after it was
initially broadcasted with the fee rate inadequate to the current mempool contention. The attack works by preventing the
originator of the transaction to use available mechanisms to increase the fee rate for the transaction.

Bitcoin Core version v0.19 introduced a special exception in the rules governing the mempool, the "CPFP carve out"15.
These changes are yet to be integrated into Elements source code base at the moment of writing, but it can be expected
that this will happen soon enough.

P , C, M, N , S, RD, RE, RC, RL(1) … RL(M−1) ts … ts+1

The effect of this special exception is that if each participant can directly spend one output in a transaction, they can
always use that output to increase the fee rate of the transaction.

Care must be taken in adding extra outputs to the transactions that could be directly controlled by the party other than
the initiator of the transaction. For example, there might be third-party service that provides fee inputs to the
participants. Such a service might want to add a 'change' output to return excess fee to themself, otherwise they will
need to maintain a bunch of exact-value UTXO for this task. This change output would be an additional output that is
directly controlled by the party other than the initiator of the transaction, The initiator of the transaction would need to
trust this service to not use that change output to deny the use of CPFP carve out exemption to the initiator.

Financial considerations

Non-recourse loan

The contract is essentially a non-recourse loan contract. The amounts of the assets are fixed before the deployment, and
changing them requires the amendment of the contract. In the case of Elements/Liquid blockchain network, this means
deployment of the new contract that receives the assets that were locked in the old contract. To allow this transition,
each state of the contract should allow mutual-agreement case. If participants mutually agree, the contract can have any
outcome, including the transfer of assets to the new contract.

The loan being non-recourse may limit its applicability, as the Creditor has to accept that there is no rules of the on-
chain contract that would require the Debtor to increase the amount of collateral if the price of the collateral asset falls.
Similarly, these rules won't allow the Debtor to take back some of the collateral in case the price of the collateral asset
raises.

Unique assets as collateral

The assets that have total issued value of one, the "unique assets" can be used as a collateral in the described loan
contract. Such a loan would have a property that the collateral cannot be split. Thus, in the event of default, the Creditor
would receive the control of the whole collateral, regardless of how much of the principal was already repaid by the
Debtor.

Unique assets may be used in the contexts where they represent some concrete thing that has value as a unit, like a
house or a unique game item. In such contexts there is likely to be a custodian who can restrict the transfer of the item,
with real-world contractual terms applied to the custody. These real-world contractual terms can include the conditions
on how the on-chain control of the unique asset translate to the real-world (or game-world) possession. The arbitration
in the case when the collateral was forfeited while part of the principal was already paid can also be done by that
custodian.

Secondary market

If the secondary market for these contracts exist, both Debtor and Creditor can realize the new gains or limit the losses
by selling their contract to a third party. It might be more difficult for Creditor to sell the contract that has the collateral
price diminishing, as the buyer needs to be optimistic on the prospects of that price. Still, in a big enough market,
selling such contract might be a viable prospect.

Oracles

It is possible to include a condition in the contract covenant script that would allow to release the collateral to the
Creditor if a valid signature from the third party is presented. Such third party would play the role of the "oracle" that
would release the said signature only in the event of the price of the collateral asset being lower than certain threshold.
Both Debtor and Creditor have to trust in this "oracle". The users of the Liquid network already trust the Liquid
Federation to some extent. Having the federation, or some subset of the federation members to be the collective "oracle"
might be the option that requires less additional trust from participants. Still, there is enough other difficulties in this
approach - how to handle swift price movements, how to reconcile the price between members of the "collective
oracle", etc. We believe that the approaches that require less trust from participants are more valuable, and we did not
explore the "oracle" approach further at this time.

1

2

3

4 (1,2)

5

6

7

Options contracts

Using the same techniques and mechanisms as the loan contract described here, it is possible to create options contracts.
This means that these options contracts can also have the properties of amounts and assets being confidential, and the
possibility of transferring rights and obligations in the contract to the third party without consent of the counterparty.

The option contract that is deployed at time , would lock asset until time and will allow the option buyer to
exchange for a fixed amount of asset , until the point in time is reached. After that, the put option seller can
reclaim . The option seller gets paid commission at time for the risk taken on locking for the duration of the
contract.

Whether the contract implements a put option or a call option depends on which asset is used in place of and . For
example, contract that locks X L-BTC with a strike price of Y L-USDT can be viewed as a call option to buy X L-BTC
at price Y. A contract that locks X L-USDT with strike price of Y L-BTC can be viewed as a put option to sell Y L-BTC
at price X.

Options contracts can be used to hedge the risk in loan contracts. The contract illustrated at example graphical scheme 2
(the one illustrating the contract with) is the most suitable for this, because the collateral forfeiture event
happens always in the same time period for any contract branch. This way, the Creditor can buy a put option for the
collateral asset at this period, and pay the option seller to accept the risk of the asset price fluctuation.

It may be tempting to create a joint contract that would enable the option to be realizable only in the event of the default
on the loan. This might make the risk presumably lower for the option seller. But it also opens the possibility of
collusion between Debtor and Creditor against the option seller to exploit this presumption of lower risk.

Another thing to mention is that if the option is to sell the collateral asset for the same asset that is given as a loan, it
might make sense for the option seller to just become the Creditor in a simpler contract rather than be an option seller in
a joint contract. The dynamics of an option contract is different from a loan contract, and some market participants may
prefer one type of the contract to another.

Thanks:

To Russell O'Connor, for inspiration of the idea for this contract and for helping to figure out how to
combine it with confidential transactions, for reviewing this article and pointing out bugs and
inefficiencies in the early drafts.
To Jonas Nick, for sharing the idea of using unique assets for delegation and the ideas on implementation
of option contracts
To them both, for reviewing the materials used to prepare this article and for helpful discussions on the
related ideas and topics.

Footnotes:

https://en.wikipedia.org/wiki/Unspent_transaction_output

See https://bitcoinops.org/en/topics/covenants/ and https://arxiv.org/abs/2006.16714

https://blockstream.com/liquid/

https://github.com/bitcoin/bips/blob/master/bip-0113.mediawiki

https://blockstream.com/simplicity.pdf

https://medium.com/blockstream/miniscript-bitcoin-scripting-3aeff3853620

With presented simple formula, for the last repayment equals .

In most cases will likely be much larger than , and last repayment will be very small in this case. Simpler
formula is easier for understanding, but for real application, it makes sense to just make the last repayment slightly
bigger than others, and the more complex formula should be used:

t0 A t1

A B t2

A t0 A

A B

N = M = S

D P mod N

P N

D = { FP ∗ (m + 1) if (FP ∗ (m + 1) + P mod N) ≥ B

B otherwise

https://en.wikipedia.org/wiki/Unspent_transaction_output
https://bitcoinops.org/en/topics/covenants/
https://arxiv.org/abs/2006.16714
https://blockstream.com/liquid/
https://github.com/bitcoin/bips/blob/master/bip-0113.mediawiki
https://blockstream.com/simplicity.pdf
https://medium.com/blockstream/miniscript-bitcoin-scripting-3aeff3853620

8

9

10

11

12

13

14

15

There can be a variant of the contract where the portions of the collateral are returned to the Debtor as the partial
repayments are made, rather than at the end of the contract. This variant is not included in this particular
specification.

Historical discussion: https://bitcointalk.org/index.php?topic=1786.msg22119#msg22119

Credit goes to Jonas Nick (https://twitter.com/n1ckler) for the idea of using unique assets in this way

https://bitcoinops.org/en/topics/op_checksigfromstack/

Described in Blocksream's "Confidential Assets" paper (https://blockstream.com/bitcoin17-final41.pdf)

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

https://bitcoinops.org/en/topics/transaction-pinning/

https://bitcoinops.org/en/topics/cpfp-carve-out/

Appendix

Transaction schematics

In the diagrams, the "free-floating" part of outputs data (the explicit fee and the scriptPubKey of the last output) is
sometimes shown at the top, and sometimes at the bottom. This is done only to improve the readability of the diagrams.
The Debtor entity is always shown at the top, the Creditor at the bottom, and the outputs are oriented in a way to
minimize visual clutter.

As discussed below in the "Security of the scripts" section, "committed" part of the outputs data in the actual transaction
should always come first, and the "free-floating" part should always be the "suffix".

The input to pay the transaction fee can be provided by one of the participants, or by Facilitator as a convenience.

If the collateral asseet or the principal asset is suitable to pay the fee, the dedicated fee input can be omitted, and the fee
can be deducted from the input that bears the suitable asset.

Contract deployment

Interactive

With a Facilitator, the Debtor and Creditor will need to use SIGHASH_ANYONECANPAY sighash type when signing
their inputs, so that the Facilitator can combine their inputs independently. If the Facilitator is not involved, participants
can sign using SIGHASH_ALL, so the signatures would cover all the inputs.

https://bitcointalk.org/index.php?topic=1786.msg22119#msg22119
https://twitter.com/n1ckler
https://bitcoinops.org/en/topics/op_checksigfromstack/
https://blockstream.com/bitcoin17-final41.pdf
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://bitcoinops.org/en/topics/transaction-pinning/
https://bitcoinops.org/en/topics/cpfp-carve-out/

When SIGHASH_ANYONECANPAY is used for Debtor's and Creditor's inputs, and the fee input is present in the
transaction, the transaction can be malleated by the block producer. Because the explicit fee output is committed to by
the signatures, ordinary network nodes cannot replace the transaction using replace-by-fee mechanism. But the block
producer can substitute fee input with its own UTXO with the same amount, and the transaction id will change. This is
not an issue for the contract described here, because its behavior does not depend on the txid of the contract deployment
transaction.

Non-interactive with Facilitator

Partial repayment

Final repayment

Collateral forfeiture

In the case when the Debtor does not receive any part of collateral back, the corresponding output will not be included
in the transaction.

Important point: the Creditor's control asset is destroyed in this transaction. Any partial repayment UTXO that is yet
unspent will be rendered inaccessible after this transaction was broadcasted. It is crucual that all the partial repayment
UTXO are spent before that (and sufficiently confirmed, so the ordering of the transactions cannot change).

The alternative approach is to not destroy the Creditor's control asset in this transaction, but to send the collateral to the
"Control asset simple lock covenant" controlled by the Creditor's control asset. The Creditor will then spend the
collateral in a separate transaction.

An implementation will need to make a decision on which approach to use.

The second approach is more conservative. There might be a bug in the software where it fails to detect that there is

some partial repayment UTXO that is yet unspent. Keeping the control asset for longer might make the consequences of
such bug not so severe. But at the same time, it costs one extra transaction. In addition to that, if the Creditor forgets to
destroy the control asset afterwards, it will waste space in thie UTXO set. The size of the UTXO set is a limited shared
resource of all the users of the blockchain and wasting it should be discouraged.

Repayment option revocation

Control asset simple lock covenant spending

Mutual-agreement contract close

The Debtor could also provide additional inputs, for example for the repayment of the remaining debt according to the
new mutually-agreed terms. Then, there would also be additional output that would send that repayment to the Creditor.

Important point: the Creditor's control asset is destroyed in this transaction. Any partial repayment UTXO that is yet
unspent will be rendered inaccessible after this transaction was broadcasted. It is crucual that all the partial repayment
UTXO are spent before that (and sufficiently confirmed, so the ordering of the transactions cannot change). The notes
on the "Collateral forfeiture" transaction diagram expand on this issue in more detail, and offer an alternative approach.

Covenant scripts

General description

As shown in the transaction schematics, most of the covenants in the described contract enforce the matching only on
the part of the outputs data. One of the outputs is only partially committed to by these covenants. In particular, the
scriptPubKey field is not committed to. This makes it possible to define the destination for that output at the spending
time, not at the commitment time. The explicit fee output that is present in Elements transactions (but not in Bitcoin
transactions) are not covered by the covenant commitment at all. This makes it possible to set the fee for the transaction
at the spending time, and removes the difficulties related to trying to estimate the needed fee ahead of time, that is
present in other covenant constructions that fix the fee at the commitment time.

When the covenant script is created, the transaction template is constructed, and then the outputs of the transaction
template are blinded using a deterministic random source that is derived according to BIP32 from the extended key
shared between the participants (the "shared blinding xkey"). This extended key is used to both derive the individual
blinding keys for the outputs, and to derive the deterministic random data used in the blinding process itself. Different
derivation paths are used for different purposes.

Not all outputs may be blinded. For example, it may be not worth the effort to blind the outputs of the control assets,
given that these outputs only reveal the structure of the contract, that might also be revealed by another properties of the
contract transactions.

The limitation of Elements script (that also exist in Bitcoin script) is that it is forbidden to construct the data chunk of
longer than 520 bytes on the stack. The blinded outputs take much more space than non-blinded ones. With 520 byte
limit on the data, only a few outputs in the transaction bounded by the described covenant can be blinded. Streaming

SHA256 opcodes that are proposed to be included16 in Elements can be a way to workaround this limitation.

During the covenant script construction, the blinded outputs are serialized as they would be serialized when building a
transaction to broadcast to the network. The chunk of that serialized data is used as a template of the committed part of
the outputs for the covenant. This chunk of data consist of all the whole outputs that are committed to, and the partial
output that has the scriptPubKey excluded from the commitment. This data is then hashed with SHA256 hash
algorithm. The resulting hash is used to ensure that the data supplied to the script at the spending time correspond to this
"committed part" of the outputs data. Along with the "committed part", the "free-floating" chunk of outputs data is
supplied in the input witness. This chunk have to contain the scriptPubKey for the partially-committed output, and any
other outputs that the spender needs to add, such as explicit fee output.

The script then combines the "committed part" with the "free-floating part" to create the final image of the outputs data
on the stack at run-time (or rather, spending time). This final image is SHA256-hashed, and then combined with other
data supplied in the input witness. These additional data chunks are what the 'signature hash' algorithm uses to create
the final 'signature hash', that the signatures in the transaction inputs commit to.

The routines

The script might need to commit to several possible variants of the outputs. For example, when the mutual-agreement
case is allowed in the covenant, at least two variants for the committed outputs will be present, the primary covenant
case, and the mutual-agreement case. This might be dealt with via the conditional execution using OP_IF/OP_ELSE
/OP_ENDIF. But a more succinct way is to just include all the enabled hash images (each 32byte in length) in the script
as a continuous data array (the length of which in bytes would be 32*n, where n is the number of options). The spender
then supplies a position in this data array, and the script takes the 32bytes of the hash from this array at the supplied
position using the OP_SUBSTR opcode (which is enabled in Elements).

OUTPUTS_HASH_LOOKUP_OPS defined as:

 # stack on entry:
 # hashes_array (to be defined by the script)
 # hash_position (to be supplied by the spender)
 OP_SWAP # because the hashes_array comes from the script,
 # and the offset comes from the witness data,
 # they will be in reverse order, and we need to swap them first

 # stack:
 # hash_position
 # hashes_array
 5

 # stack:
 # 5
 # hash_position
 # hashes_array
 OP_LSHIFT # left-shift to 5 binary places, same as multiplying by 32

 # stack:
 # offset
 # hashes_array
 32

 # stack:
 # 32
 # offset
 # hashes_array
 OP_SUBSTR

 # stack:
 # chosen_hash

When the hash is chosen from the hashes_array (or directly given in the script, if there is only one option), the data
chunk that represents the outputs data portion that is committed to by the covenant has to be matched against this hash,
and then combined with the "free-floating" part of the outputs data.

OUTPUTS_HASHCHECK_THEN_COMBINE_OPS defined as:

 # stack on entry:
 # chosen_hash
 # committed_outs_data_chunk
 # free_floating_outs_data_chunk
 OP_OVER # get the committed_outs_data_chunk to the top

 # stack:
 # committed_outs_data_chunk
 # chosen_hash
 # committed_outs_data_chunk
 # free_floating_outs_data_chunk
 OP_SHA256 # take SHA256 of committed_outs_data_chunk

 # stack:
 # SHA256(committed_outs_data_chunk)
 # chosen_hash
 # committed_outs_data_chunk
 # free_floating_outs_data_chunk
 OP_EQUALVERIFY # check that the resulting hash matches the expected, fail otherwise

 # stack:
 # committed_outs_data_chunk
 # free_floating_outs_data_chunk
 OP_SWAP # swap the data chunks to be in correct order for OP_CAT

 # stack:
 # free_floating_outs_data_chunk
 # committed_outs_data_chunk
 OP_CAT # combine the data chunks to form the complete outputs data

 # stack:
 # outputs_data

The covenant script dynamically constructs the signature hash from the data supplied in the input witness, and ensures
that particular chunk of that data is the same as it was in the transaction template when the covenant script was
constructed.

Then, OP_CHECKSIGFROMSTACKVERIFY is used to verify a signature over this constructed signature hash, with a
signature that is partially supplied in the input witness. Then, the same signature is supplied to OP_CHECKSIG, which
checks this signature against the signature hash that was constructed from the transaction currently being processed.
This ensures that the current transaction matches the template transaction in the part that the covenant checks.

Note that OP_CHECKSIGFROMSTACKVERIFY do additional SHA256 hashing over the data supplied to it. This is
because OP_CHECKSIG checks against a double-SHA256-hashed data. So technically, not a sighash, but a hash
preimage of the final sighash is supplied to OP_CHECKSIGFROMSTACKVERIFY.

Signature hash commits to the serialized spending script. This means that when we create the sighash data dynamically,
the data would need to include the covenant script itself, and this would make the witness data big, and the length of the
data will likely exceed the 520 byte limitation for the stack item, that was discussed earlier. Fortunately, the
OP_CODESEPARATOR opcode allows to split the script for the purposes of sighash commitment. Only the opcodes
that come after OP_CODESEPARATOR are used in the construction of the signature hash. It makes sense to make this
part minimal, and include only the OP_CHECKSIGFROMSTACKVERIFY + OP_CHECKSIG combination. Note that
while the sighash does not commit to the whole script, the P2WSH scriptPubKey used for the covenant outputs commits
to the whole script. Thus, the spending condition for the input will require the whole script to execute successfully.

POST_CODESEP_OPS defined as:

 # stack on entry:
 # pubkey
 # sighash_preimage
 # signature
 # pubkey (the same one)
 # signature+SIGHASH_ALL (the same signature, but concatenated with a SIGHASH type byte)
 OP_CHECKSIGFROMSTACKVERIFY

 # stack:
 # pubkey
 # signature+SIGHASH_ALL
 OP_CHECKSIG

 # stack:
 # TRUE if the current transaction matches the template, FALSE otherwise

Because the signature checks are used as a way to enforce the match between the transaction template and the actual
transaction and not for spending authorization, it is not important what key is used for these signatures. It may be a
widely known key. If the signature matches both the sighash constructed by the script and the sighash calculated by
OP_CHECKSIG, this means that both hash values are equal.

Since we don't need to keep the key secret, the value of the nonce used in the signing process can also be arbitrary.

It is therefore makes sense to exploit the fact that there is an elliptic point for the secp256k1 curve with an anomalously

small x coordinate, yet with a known logarithm17 (this fact is likely a consequence of how the generator for the curve

was chosen18). Using this value as both the nonce in the signing process and as a public key for the signing allows to
save a bunch of bytes in the witness data.

PUSH_SMALL_X defined as:

 # stack on entry: <no arguments required>
 DATA("3b78ce563f89a0ed9414f5aa28ad0d96d6795f9c63")

 # stack:
 # DATA("3b78ce563f89a0ed9414f5aa28ad0d96d6795f9c63")

When used as a public key, the value will be (encoded in hexadecimal):
"0200000000000000000000003b78ce563f89a0ed9414f5aa28ad0d96d6795f9c63".

The private key for this public key is calculated as where is the order or the secp256k1 curve.

We can save additional 4 bytes in the witness by not pushing the 12-byte prefix "0200...00" on the stack just as a data
value, but by constructing it instead.

(order + 1)/2 order

PUSH_SMALLPUB_PREFIX defined as:

 # stack on entry: <no arguments required>
 2

 # stack:
 # 2
 1

 # stack:
 # 1
 # 2
 88 # 11*8

 # stack:
 # 88
 # 1
 # 2
 OP_LSHIFT # take the value "1" and left-shift it to 88 binary places
 # The result is the value 10000000000000000000000
 # That is encoded as little-endian bytestring 000000000000000000000001

 # stack:
 # DATA("000000000000000000000001")
 # 2
 11

 # stack:
 # 11
 # DATA("000000000000000000000001")
 # 2
 OP_LEFT # Take 11 bytes of the constructed long value
 # so that only zeroes are left

 # stack:
 # DATA("0000000000000000000000")
 # 2
 OP_CAT # Concatenate 2 (represented as the byte "02")
 # with a string of zeroes to construct the needed prefix

 # stack:
 # DATA("020000000000000000000000")

To satisfy the spending conditions of the covenant, the spender needs to sign the sighash of the transaction with the key
discussed above, and provide the component of the signature in the input witness. The covenant script will construct
the final signature from the known component of the signature, the 4 bytes prefix that is also provided in the input
witness, and the component provided by the spender. One of those 4 bytes in the prefix will depend on the length of
the component, and thus it is more convenient to provide the whole 4 bytes as one witness stack item rather than
construct it byte by byte.

The other data that the spender needs to provide is two chunks of the outputs data, the "committed part" and the "free-
floating" part, and two data chunks representing the data that go into the signature hash before (the 'prefix') and after
(the 'suffix') of the hashOuts.

There are also two fields that go into the 'suffix': the nLockTime field and the sighash type field. The later is added by
the script itself, and the former is provided in the witness. It is important to check that the size of nLockTime data
provided is exactly 4 bytes. Because the 'prefix' is supplied by the spender, allowing variable-sized data in the 'suffix'
would enable an attacker to 'hide' the real hashOuts inside one of the fields in the 'prefix', and supply hashOuts of their
liking.

The routine that checks the "committed part" against a chosen hash and the routine that combines the "committed part"
with the "free-floating part" were presented above.

The following routine takes the outputs data already as a whole field. It prepares everything for the
OP_CHECKSIGFROMSTACKVERIFY + OP_CHECKSIG pair in POST_CODESEP_OPS. This is the longest routine
in the covenant scripts.

S

R

S

S

OUTPUTS_FINAL_CHECK_OPS defined as:

 # stack on entry:
 # outputs_data # data of the outputs, checked and combined with OUTPUTS_HASHCHECK_THEN_COMBINE_OPS
 # locktime_data # data representing the nLockTime field of the transaction
 # sighash_data_prefix # all the other data that go into sighash before the outputs:
 # # from nVersion to the asset issuances
 # sig_prefix # first 4 byte of the signature, including the byte that
 # # depends on the length of the S component
 # sig_suffix # the S component of the signature with a couple of service bytes
 OP_HASH256 # The sighash commits to the hash of the outputs data. Do the hashing.
 # Note that HASH256 is SHA256(SHA256(data))

 # stack:
 # hashOuts # this is the HASH256(outputs_data)
 # locktime_data
 # sighash_data_prefix
 # sig_prefix
 # sig_suffix
 OP_SWAP # Prepare the stack for OP_CAT, so that locktime_data is appended to hashOuts

 # stack:
 # locktime_data
 # hashOuts
 # sighash_data_prefix
 # sig_prefix
 # sig_suffix
 OP_SIZE # Get the size of locktime_data

 # stack:
 # locktime_data_size
 # locktime_data
 # hashOuts
 # sighash_data_prefix
 # sig_prefix
 # sig_suffix
 4 # will check that locktime_data_size is 4

 # stack:
 # 4
 # locktime_data_size
 # locktime_data
 # hashOuts
 # sighash_data_prefix
 # sig_prefix
 # sig_suffix
 OP_EQUALVERIFY # Fail if locktime_data_size is not 4

 # stack:
 # locktime_data
 # hashOuts
 # sighash_data_prefix
 # sig_prefix
 # sig_suffix
 OP_CAT # Append locktime_data to hashOuts

 # stack:
 # hashOuts+locktime_data
 # sighash_data_prefix
 # sig_prefix
 # sig_suffix
 DATA('01000000') # Push the value for SIGHASH_ALL on the stack.
 # Note that sighash type takes 4 bytes in the sighash data,
 # even if it is expressible in just 1 byte

 # stack:
 # SIGHASH_ALL
 # hashOuts+locktime_data
 # sighash_data_prefix
 # sig_prefix
 # sig_suffix
 OP_CAT # Append sighash type to the hashOuts+locktime_data chunk.
 # We now completed the suffix of the data that the sighash commits to

 # stack:
 # sighash_data_suffix # consists of: hashOuts+locktime_data+SIGHASH_ALL
 # sighash_data_prefix
 # sig_prefix
 # sig_suffix
 OP_CAT # Combine the sighash data prefix and suffix, and get the complete
 # sighash data on the stack

 # stack:
 # sighash_data
 # sig_prefix
 # sig_suffix
 OP_SHA256 # hash the sighash data once (one round of SHA256)
 # OP_CHECKSIGFROMSTACKVERIFY will do another round of SHA256,
 # so we now have the preimage of the sighash

 # stack:
 # sighash_preimage
 # sig_prefix
 # sig_suffix
 OP_TOALTSTACK # move the sighash_preimage to alternative stack

 # stack:
 # sig_prefix
 # sig_suffix
 # altstack:
 # sighash_preimage
 PUSH_SMALL_X # get the x coordinate of the 'special elliptic point'

 # stack:
 # SMALL_X
 # sig_prefix
 # sig_suffix
 # altstack:
 # sighash_preimage
 PUSH_SMALLPUB_PREFIX # get the prefix for the 'special pubkey' on the stack

 # stack:
 # DATA("020000000000000000000000")
 # SMALL_X
 # sig_prefix
 # sig_suffix
 # altstack:
 # sighash_preimage
 OP_OVER # get SMALL_X to the top of the stack

 # stack:
 # SMALL_X
 # DATA("020000000000000000000000")
 # SMALL_X
 # sig_prefix
 # sig_suffix
 # altstack:
 # sighash_preimage
 OP_CAT # construct the 'special pubkey' on the stack

 # stack:
 # pubkey
 # SMALL_X
 # sig_prefix
 # sig_suffix
 # altstack:
 # sighash_preimage
 OP_TOALTSTACK # move the 'special pubkey' to alternative stack

 # stack:
 # SMALL_X
 # sig_prefix
 # sig_suffix
 # altstack:
 # pubkey
 # sighash_preimage
 OP_CAT # Construct the first part of the signature

 # stack:
 # sig_prefix+SMALL_X
 # sig_suffix
 # altstack:
 # pubkey
 # sighash_preimage
 OP_SWAP # Swap the two values for next OP_CAT

 # stack:
 # sig_suffix
 # sig_prefix+SMALL_X
 # altstack:
 # pubkey
 # sighash_preimage
 OP_CAT # Combine the first part of the signature to the second part, completing it

 # stack:
 # signature
 # altstack:
 # pubkey
 # sighash_preimage
 OP_DUP # We will need one signature for OP_CHECKSIGFROMSTACKVERIFY and one for OP_CHECKSIG

 # stack:
 # signature
 # signature
 # altstack:
 # pubkey
 # sighash_preimage
 OP_1 # the sighash type in the signature itself takes only one byte, as opposed
 # to 4 bytes it takes within the sighash data.
 # OP_1 will push byte 01 to the stack, which corresponds to SIGHASH_ALL

 # stack:
 # 01
 # signature
 # signature
 # altstack:
 # pubkey
 # sighash_preimage
 OP_CAT # Append the byte 01 to the signature, so we will have the signature with
 # sighash type for OP_CHECKSIG, and without it, for OP_CHECKSIGFROMSTACKVERIFY

 # Now we need to prepare the stack arguments for POST_CODESEP_OPS

 # stack:
 # signature+SIGHASH_ALL
 # signature
 # altstack:
 # pubkey
 # sighash_preimage
 OP_FROMALTSTACK # get the 'special pubkey' from altstack

 # stack:
 # pubkey
 # signature+SIGHASH_ALL
 # signature
 # altstack:
 # sighash_preimage
 OP_ROT # Rotate the top 3 items on the stack so that signature+SIGHASH_ALL becomes last

 # stack:
 # signature
 # pubkey
 # signature+SIGHASH_ALL
 # altstack:
 # sighash_preimage
 OP_OVER # Duplicate the pubkey from the second position on the stack

 # stack:
 # pubkey
 # signature
 # pubkey
 # signature+SIGHASH_ALL

 # altstack:
 # sighash_preimage
 OP_FROMALTSTACK # Retrieve sighash_preimage from the stack

 # stack:
 # sighash_preimage
 # pubkey
 # signature
 # pubkey
 # signature+SIGHASH_ALL
 OP_SWAP # Adjust argument positions to match what is expected by POST_CODESEP_OPS

 # stack:
 # pubkey
 # sighash_preimage
 # signature
 # pubkey
 # signature+SIGHASH_ALL
 OP_CODESEPARATOR # Everything after this opcode will be included in the sighash data.
 # The full script including everything before and after this opcode
 # will be included in the input witness.

 # stack:
 # pubkey
 # sighash_preimage
 # signature
 # pubkey
 # signature+SIGHASH_ALL
 POST_CODESEP_OPS # Do the checking via OP_CHECKSIGFROMSTACKVERIFY + OP_CHECKSIG

Main covenant script

The script has two execution paths - for the lateral state transition, and for the vertical state transition. The execution
path are chosen by the top value on the witness stack. If the value is 0, the lateral state progression path is chosen. If the
value is 1, the vertical state progression path is chosen. The values larger than 1 will mean the same as 1. Using other
values than 1 may result in different size of witness data, which can influence the transaction ordering in the mempool.
But this is possible only when the transaction standardness rules are not enforced (the MINIMALIF rule). This is not an
issue, because only blocksigners can bypass the standardness rules, and blocksigners already directly determine the
transaction ordering.

MAIN_COVENANT_OPS defined as:

 # stack on entry:
 #
 # for lateral state progression:
 # 0
 # offset_into_hash_array
 # committed_outs_data_chunk
 # free_floating_outs_data_chunk
 # locktime_data
 # sighash_data_prefix
 # sig_prefix
 # sig_suffix
 #
 # for vertical state progression:
 # 1
 # committed_outs_data_chunk
 # free_floating_outs_data_chunk
 # locktime_data
 # sighash_data_prefix
 # sig_prefix
 # sig_suffix
 OP_IF

 # stack:
 # committed_outs_data_chunk
 # free_floating_outs_data_chunk
 # locktime_data
 # sighash_data_prefix
 # sig_prefix
 # sig_suffix
 <timeout> # the calculated timeout in blocks for when the vertical

 # state progression becomes allowed

 # stack:
 # timeout
 # committed_outs_data_chunk
 # free_floating_outs_data_chunk
 # locktime_data
 # sighash_data_prefix
 # sig_prefix
 # sig_suffix
 OP_CHECKLOCKTIMEVERIFY # enforce the timelock

 # stack:
 # timeout
 # committed_outs_data_chunk
 # free_floating_outs_data_chunk
 # locktime_data
 # sighash_data_prefix
 # sig_prefix
 # sig_suffix
 OP_DROP # timeout was not dropped by OP_CHECKSIGFROMSTACKVERIFY, drop explicitly

 # stack:
 # committed_outs_data_chunk
 # free_floating_outs_data_chunk
 # locktime_data
 # sighash_data_prefix
 # sig_prefix
 # sig_suffix
 DATA(<hash_for_revocation>) # the hash for the committed part of outputs
 # for the payment option revocation case

 OP_ELSE # The lateral progression case

 # stack:
 # offset_into_hash_array
 # committed_outs_data_chunk
 # free_floating_outs_data_chunk
 # locktime_data
 # sighash_data_prefix
 # sig_prefix
 # sig_suffix
 DATA(<hashes_array>) # The hashes_array will actually consist of up to three hashes:
 # the hash of committed part of outputs for partial repayment,
 # the hash of committed part of outputs for early full repayment,
 # and the hash of committed part of outputs for mutual close case.

 # stack:
 # hashes_array
 # offset_into_hash_array
 # committed_outs_data_chunk
 # free_floating_outs_data_chunk
 # locktime_data
 # sighash_data_prefix
 # sig_prefix
 # sig_suffix
 OUTPUTS_HASH_LOOKUP_OPS

 OP_ENDIF # branch finished

 # stack:
 # outputs_hash
 # committed_outs_data_chunk
 # free_floating_outs_data_chunk
 # locktime_data
 # sighash_data_prefix
 # sig_prefix
 # sig_suffix
 OUTPUTS_HASHCHECK_THEN_COMBINE_OPS

 # stack:
 # outputs_data
 # locktime_data
 # sighash_data_prefix

 # sig_prefix
 # sig_suffix
 OUTPUTS_FINAL_CHECK_OPS

Control asset spending covenant script

This is the covenant that allows the delegated spending. The repayments to the Creditor and possible partial collateral
return to Debtor are spent by satisfying this script.

CONTROL_ASSET_SPEND_OPS defined as:

 # stack on entry:
 # free_floating_outs_data_chunk
 # locktime_data
 # sighash_data_prefix
 # sig_prefix
 # sig_suffix
 DATA(<control_asset_output_sans_scriptpubkey>)

 # stack:
 # committed_outs_data_chunk # the control asset output data, sans scriptPubKey
 # free_floating_outs_data_chunk
 # locktime_data
 # sighash_data_prefix
 # sig_prefix
 # sig_suffix
 OP_SWAP # Swap the two values for next OP_CAT

 # stack:
 # free_floating_outs_data_chunk
 # committed_outs_data_chunk
 # locktime_data
 # sighash_data_prefix
 # sig_prefix
 # sig_suffix
 OP_CAT # Combine the outputs data chunks to get complete outputs data

 # stack:
 # outputs_data
 # locktime_data
 # sighash_data_prefix
 # sig_prefix
 # sig_suffix
 OUTPUTS_FINAL_CHECK_OPS

Security of the scripts

The scripts construct the signature from the supplied component of the signature and known value for R component.
The pubkey is fixed. The risk of the attack via this particular input data is the same as the risk for the attack on the
signature verification code in the Elements client. Elements is based on Bitcoin Core codebase, and this particular part
of functionality does not deviate from the upstream behavior. Given that the incentives to attack Bitcoin signature
functionality is enormously high, the level of risk that such a basic functionality will be broken in Elements is extremely
low.

The scripts construct the signature hash from the inputs. Only a part of this data is checked to be as expected. Part of
outputs, and most of sighash data are supplied by the spender.

The covenants are built on the notion that only a part of outputs data is committed to by the covenant script. The
spender is allowed to attach extra inputs and add extra outputs. This might be useful to extend the contract or combine it
with another contracts. The assets, amounts and (except for where scriptPubKey is not committed) the destinations of
the committed outputs will be as expected, and the contract terms will be enforced.

It is important that the committed-to outputs will be the first. If the attacker is able to put their arbitrary outputs before
the committed-to outputs, they can craft their data such that their last custom output not complete: the data chunk in the
witness would contain only OP_RETURN opcode, but the size of scriptPubKey would be much bigger. In the
transaction itself, this output will contain OP_RETURN followed by the "committed-to" part of the outputs data. The
Attacker's outputs that completely bypass the covenant would go before that custom output.

Adding extra data means that participants can construct the transactions of different sizes. But because it is the spender

S

16

17

18

that will pay the fee for this extra size, this is not a concern.

The spender can supply the prefix for the sighash data, as well as nLockTime field. The size of nLockTime field is
checked by the script, while the size of the prefix data is not.

The attack might be imagined where the additional data influences the final hash of outputs in such a way that the
expected, "enforced" outputs do not correspond anymore to this influenced hash, but another set of unrelated outputs are
enabled. Would the hash function used for sighash calculation be a weak one, we could talk about the possibility of a
chosen prefix collision. But even then, such attack would be hindered by the fact that this spender-supplied data would
need to correspond to a valid transaction that the spender can actually construct. There's no known collision attacks on
SHA256 hash function at the moment.

Footnotes:

https://github.com/ElementsProject/elements/pull/817

https://crypto.stackexchange.com/questions/60420/what-does-the-special-form-of-the-base-point-of-secp256k1-
allow

https://bitcointalk.org/index.php?topic=289795.msg3183975#msg3183975

https://github.com/ElementsProject/elements/pull/817
https://crypto.stackexchange.com/questions/60420/what-does-the-special-form-of-the-base-point-of-secp256k1-allow
https://crypto.stackexchange.com/questions/60420/what-does-the-special-form-of-the-base-point-of-secp256k1-allow
https://bitcointalk.org/index.php?topic=289795.msg3183975#msg3183975

	Introduction
	Challenges in 'smart contracts'
	The innovations

	Our approach to contract specification and development
	Holistic analysis
	Reasoning about the contract behavior

	High-level specification
	Contract premise
	Basic Asset-Based Loan contract
	Asset-Based Loan contract with partial repayments
	Examples

	Representing state in the contract
	Lateral state progression
	Vertical state progression

	Transferable rights and obligations
	Control assets

	Keeping data confidential
	On-chain versus off-chain
	Confidential transactions

	Before contract deployment
	Verification of the covenant scripts
	Privacy of UTXO ownership

	Contract deployment
	Interactive
	Non-interactive

	Blockchain network considerations
	Timelocks
	Identifying contract transactions

	Mempool considerations
	Fees
	Transaction pinning

	Financial considerations
	Non-recourse loan
	Unique assets as collateral
	Secondary market
	Oracles
	Options contracts

	Appendix
	Transaction schematics
	Contract deployment
	Interactive
	Non-interactive with Facilitator

	Partial repayment
	Final repayment
	Collateral forfeiture
	Repayment option revocation
	Control asset simple lock covenant spending
	Mutual-agreement contract close

	Covenant scripts
	General description
	The routines
	Main covenant script
	Control asset spending covenant script
	Security of the scripts

